iOS——【Blocks】

news/2024/7/20 21:54:18 标签: ios, macos

Blocks概要

Blocks是C语言的扩充功能,即带有自动变量的匿名函数。匿名函数就是不带函数名的函数。这一概念同样被称为“闭包”,lambda计算等。
自动变量是在函数内部声明的变量,其作用域仅限于声明它的函数内部。这意味着它们只能在其声明的函数内部使用,并且在函数执行完毕后会被自动销毁。

Blocks模式

block语法的完整形式:

^void (int event) {
    //...
}

即为:

^返回值类型 参数列表 表达式
与C语言不同的地方有:

  1. 没有“^”(插入记号):插入该记号便于查找。
  2. 没有函数名:因为为匿名函数。

block的返回值类型是可以省略的,省略返回值类型后,如果有return语句就返回该返回值类型,没有的话就使用void类型。
其次,如果不使用参数,参数列表也可以省略。

Block类型变量

同样的,在Block语法下,可将Block语法赋值给声明为Block类型的变量中。在有关Blocks的文档中,“Block”既指源代码中的Block语法,也指由Blcok语法所生成的值。
声明Block类型变量的语法如下:

int (^blk)(int);

该Block类型变量与一般的C语言变量完全相同,可以用于:自动变量、函数参数、静态变量、静态全局变量、全局变量。
下面使用Block语法将Block赋值为Block变量:

int (^blk)(int) = ^(int count)(return count+1);

由“^”开始的Block语法生成的Block被赋值给变量blk中。因为与通常的变量相同,所以也可以由Block类型变量向Block类型变量赋值。

int (^blk1)(int) = blk;
int (^blk2)(int);
blk2 = blk1;

在函数参数中使用Block类型变量可以向函数传递Block:

void func (int (^blk)(int)) {
  
}

在函数返回值中指定Block类型,可以将Block作为返回值返回:

int (^func()(int)) {
  return ^(int count)(return count+1);
}

还可以使用typedef简化块的记述方式,见EOF学习的博客第38条。
将赋值给Block类型变量的Block方法像C语言通常的函数调用那样使用,这种方法与使用函数指针类型变量调用函数的方法几乎完全相同。变量funcptr为函数指针类型的时候,像下面这样调用函数指针类型变量:

int result = (*funcptr)(10);

变量blk为Block类型的情况下,这样调用Block类型变量:

int result = blk(10);

通过Block类型变量调用Block与C语言通常的函数调用没有区别:

// blk_t blk就是一个块对象
int func(blk_t blk, int rate) {
  return blk(rate);
}

//块对象在OC中也可以当参数
- (int) useBlock: (blk_t)blk rate:(int)rate;

也可以使用指向Block类型变量的指针,即Block指针类型变量。

typedef int (^blk_t)(int);
blk_t blk = ^(int count)(return count+1);
blk_t *blkptr = &blk;
(*blktr)(10);

截获自动变量值

Blocks中,Blocks表达式截获所使用的自动变量的值,即保存该自动变量的瞬间值。
因为Block表达式保存了自动变量的值,所以在执行Blocks语法后,即使改写Block中所使用的自动变量的值也不会影响执行时自动变量的值。

int main() {
  int dmy = 256;
  int val = 10;
  const char *fmt = “val = %d\n”;
  //这里声明了块就是在截获变量,此时捕获的fmt和val的值就是在该块被创建之前那一瞬间的值,哪怕后面已经改变了fmt和val的值,这里截获的结果还是改变之前的值,因为那才是这个块创建那一瞬间的时候变量的值。
  void(^blk)(void) = ^{printf(fmt, val);};
  val = 2;
  fmt = “These value were changed. val = %d\n”;
  blk();
  return 0;
}

__block说明符

实际上,自动变量值截获只能保存执行Block语法瞬间的值。保存后就不能修改该值。如果尝试改写截获的自动变量的值:

int val = 0;
void (^blk)(void) = ^{val = 1};

我们发现编译的时候会报错。
若想在Block语法表达式中给自动变量赋值,需要在该自动变量上附加__block说明符:

__block int val = 0;
void (^blk)(void) = ^{val = 1};

使用附有_ _blcok说明符的可在Block中赋值,该变量称为__block变量。

截获的自动变量

已知如果尝试改写截获的自动变量的值,编译的时候会报错。那么截获OC对象,调用变更该对象的方法也会产生编译错误吗?

id array = [[NSMutableArray alloc] init];
void (^blk)(void) = ^{
  id obj = [[NSObject alloc] init];
  [array addObject: obj];
}

这样是没有问题的,而向截获的变量array赋值就会编译错误。
虽然向截获的变量array赋值会产生错误,但是使用截获的值不会产生错误。
这种情况下,需要给截获的自动变量附加 _block说明符。

__block id array = [[NSMutableArray alloc] init];
void (^blk) (void) = ^{
  array = [[NSMutableArray alloc] init];
};

Blocks的实现

Block的实质

clang (LLVM 编译器)具有转换为我们可读源代码的功能 。通过“-rewrite-objo”选项就能将含有Block语法的
源代码变换为C ++的源代码。说是C ++,其实也仅是使用 了str uc t 结构,其本质是C 语言源代码。

clang -rewrite-objc 源代码文件名

我们转换如下的block代码:

int main() {
  void (^blk)(void) = ^{printf("Block\n”);};
  blk(); 
  return 0;
}

此代码的Block语法最为简单,它省略了返回值类型以及参数列表。该源代码通过clang可变换为以下形式:

//经过clang转换后的C++代码
struct __block_impl {
    void *isa; // 指向 block 的类的指针
    int Flags; // 标志位
    int Reserved; // 保留字段
    void *FuncPtr; // 指向 block 函数的指针
};

struct __main_block_impl_0 {
    struct __block_impl impl; // block 的实现
    struct __main_block_desc_0 *Desc; // block 的描述
    // 构造函数,初始化 impl 和 Desc 字段
    __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
        impl.isa = &_NSConcreteStackBlock; // 设置 isa 指针
        impl.Flags = flags; // 设置标志位
        impl.FuncPtr = fp; // 设置函数指针
        Desc = desc; // 设置描述指针
    }
};

// block 函数的实现
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
    printf("Block\n"); // 打印信息
}

// block 的描述结构
static struct __main_block_desc_0 {
    size_t reserved; // 保留字段
    size_t Block_size; // block 的大小
} __main_block_desc_0_DATA = {
    0, // 保留字段为 0
    sizeof(struct __main_block_impl_0) // block 实现的大小
};

int main(int argc, const char * argv[]) {
    // 定义一个函数指针 blk,指向 __main_block_impl_0 结构体的实例,该实例通过 __main_block_impl_0 构造函数初始化
    void (*blk)(void) = (void (*)(void))&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA);

    // 调用 block 函数指针
    ((void (*)(struct __block_impl *))((struct __block_impl *)blk)->FuncPtr)((struct __block_impl *)blk);
    return 0; // 返回
}

struct _ _block_impl:这个结构体定义了一个 block 的实现,包含了指向 block 类的指针 isa、标志位 Flags、保留字段 Reserved 和指向 block 函数的指针 FuncPtr。
struct _ _main_block_impl_0:这个结构体扩展了 __block_impl,定义了一个特定的 block 实现。它包含一个 _ _block_impl 的实例、一个指向 block 描述的指针 Desc,并且有一个构造函数用于初始化这些字段。
_ _main_block_impl_0(void *fp, struct _ _main_block_desc_0 *desc, int flags=0):这是 _ _main_block_impl_0 的构造函数,用于初始化 impl 和 Desc 字段。
_ _main_block_func_0(struct _ main_block_impl_0 * _cself):这是 block 的实际函数实现,在本例中只是简单地打印 “Block” 信息。
struct _ _main_block_desc_0:这个结构体描述了 block 的大小和保留空间。
_ _main_block_desc_0_DATA:这是 block 描述的实际数据,包括大小信息。
main 函数中,首先定义了一个函数指针 blk,它指向一个 _ _main_block_impl_0 结构体的实例,该实例通过 _ main_block_impl_0 的构造函数初始化,并且调用了这个 block 函数指针,打印 “Block” 信息。
该函数的参数
cself相当于C++实例方法中所指的自身变量this,或是OC实例方法中指向对象自身的变量self,即参数 _cself为指向Block值的变量。

由这次Block语法变换而来的_main_block_func_0 函数并不使用__cself。我们先来看看该参数的声明:

struct __main_block_impl_0* __cself

//结构体声明:
struct __main_block_impl_0 {
  	struct __block_impl impl;
  	struct __main_block_desc_0* Desc;
}

第一个成员变量是impl,其__block_impl结构体的声明:

struct __block_impl {
	void *isa;
	int Flags;
	int Reserved;
	void *FuncPtr;
}

第二个成员变量是Desc指针,其__main_block_desc_0结构体的声明:

static struct __main_block_desc_0 {
  	size_t reserved;
  	size_t Block_size;
}

以上就是初始化__main_block_impl_0结构体成员的源代码。我们刚刚跳过了_NSConcreteStackBlock的说明。_NSConcreteStackBlock用于初始化__block_impl结构体的isa成员。虽然大家很想了解它,但在进行讲解之前,我们先来看看该构造函数的调用。

void (*blk)(void) = (void (*)(void))&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA);

因为转换较多,看起来不是很清楚,所以我们去掉转换的部分,具体如下:

struct __main_block_impl_0 tmp = __main_block_impl_0(__main_block_func_0, &__main_block_desc_0_DATA);

struct __main_block_impl_0 *blk = &tmp;

这样就容易理解了。该源代码将_ main_block_impl0结构体类型的自动变量,即栈上生成的 main_block_impl_0 结构体实例的指针,赋值给 _main_block_impl_0结构体指针类型的变量 blk。以下为这部分代码对应的最初源代码。

void(^blk)(void)=^{printf("Block\n");};

将 Block 语法生成的Block赋给Block 类型变量blk。它等同于将_ main_block_impl_0 结构体实例的指针赋给变量blk。该源代码中的 Block 就是 main_block_impl_0 结构体类型的自动变量,即栈上生成的 main_block_impl_0结构体实例。
下面就来看看
_main_block_impl_0结构体实例构造参数。

__main_block_impl_0(__main_block_func_0, &__main_block_desc_0_DATA);

第一个参数是由Block语法转换的C语言函数指针。第二个参数是作为静态全局变量初始化的_ main_block_desc_0 结构体实例指针。以下为 _main_block_desc_0 结构体实例的初始化部分代码。

static struct __main_block_desc_0 __main_block_desc_0_DATA = {
	0sizeof(struct __main_block_impl_0)
};

我们来确认一下使用该 Block的部分。

blk();

这部分可变换为以下源代码:

((void (*)(struct __block_impl *))(
(struct __block_impl *)blk)->FuncPtr)((struct_block_impl *)blk);

去掉转换部分。

(*blk->impl.FuncPtr)(blk);

这就是简单地使用函数指针调用函数。正如我们刚才所确认的,由Block 语法转换的_ main_block_func_0函数的指针被赋值成员变量FuncPtr中。另外也说明了, _main_block_func_0函数的参数__cself指向Block值。在调用该函数的源代码中可以看出Block正是作为参数进行了传递。

其实,所谓Block 就是Objective-C 对象。

截获自动变量

int main(int argc, const char * argv[]) {
	int dmy = 256;
    int val = 10;
    const char  *fmt = "val = %d\n";
    void (^blk)(void) = ^{
    	printf(fmt, val);
    };
    blk();
    return 0;
}
struct __block_impl {
  	void *isa;
  	int Flags;
  	int Reserved;
  	void *FuncPtr;
};

struct __main_block_impl_0 {
  	struct __block_impl impl;
  	struct __main_block_desc_0* Desc;
  	const char *fmt;
  	int val;
  	__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, const char *_fmt, int _val, int flags=0) : fmt(_fmt), val(_val) {
    	impl.isa = &_NSConcreteStackBlock;
    	impl.Flags = flags;
    	impl.FuncPtr = fp;
    	Desc = desc;
  	}
};

static void __main_block_func_0(struct __main_block_impl_0 *__cself {
  	const char *fmt = __cself->fmt;
  	int val = __cself->val; 
  
	printf(fmt, val);
}

static struct __main_block_desc_0 {
  	size_t reserved;
  	size_t Block_size;
} __main_block_desc_0_DATA = {
	0, 
	sizeof(struct __main_block_impl_0)
};

int main(int argc, const char * argv[]) {
	int dmy = 256;
    int val = 10;
    const char *fmt = "val = %d\n";
    void (*blk)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, fmt, val));
    return 0;
}

其中Block语法表达式中使用的自动变量被作为成员变量追加到了__main_block_impl_0结构体中。

struct __main_block_impl_0 {
  	struct __block_impl impl;
  	struct __main_block_desc_0* Desc;
  	const char *fmt;
  	int val;
}

_ _main_block_impl_0结构体内声明的成员变量类型与自动变量类型完全相同。
请注意 Block 语法表达式中没有使用的自动变量不会被追加
初始化该结构体实例的构造函数的差异:

__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, const char *_fmt, int _val, int flags=0) : fmt(_fmt), val(_val) {
//通过构造函数调用确认其参数
void (*blk)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, fmt, val));

使用执行Block语法时的自动变量fmt 和 val来初始化__main_block_impl_0结构体实例。即在该源代码中,__main_block_impl_0结构体实例的初始化如下:

impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
fmt = "val = %d\n";
val = 10;

初始化时对fmt和val进行了赋值。由此可知,在__main_block_impl_0结构体实例中(即Block),自动变量被截获。
再看一下使用Block的匿名函数的实现:

^{printf(fmt, val)};

转换为:

static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  	const char *fmt = __cself->fmt;
  	int val = __cself->val;
  	
	printf(fmt, val);
}

在转换后的源代码中,截获到__main_block_impl_0 结构体实例的成员变量上的自动变量,这些变量在Block语法表达式之前被声明定义。因此,原来的源代码表达式无需改动便可使用截获的自动变量值执行。

在Block 中利用C语言数组类型的变量时有可能使用到的源代码。首先来看将数组传递给Block的结构体构造函数的情况。

void func(char a[10]) {
	printf("%d\n",a[0]);
}
int main() {
	char a[10] = {2};
	func(a);
}

该源代码可以顺利编译,并正常执行。在之后的构造函数中,将参数赋给成员变量中,这样在变换了Block语法的函数内可由成员变量赋值给自动变量。源代码预测如下。

void func(char a[10]) {
	char b[10] = a;
	printf("%d\n", b[0]);
}
int main() {
	char a[10] = {2};
	func(a);
}

该源代码将C语言数组类型变量赋值给C语言数组类型变量中,这是不能编译的。虽然变量的类型以及数组的大小都相同,但C语言规范不允许这种赋值。当然,有许多方法可以截获值,但Blocks 似乎更遵循C语言规范。

__Block说明符

Block中使用自动变量后,在Block的结构体实例中重写该自动变量也不会改变原先截获的自动变量。
以下源代码试图改变Block中的自动变量val。该代码会产生编译错误。

int val = 0;
void(^blk)(void) = ^{val = 1;};

因为在实现上不能改写被截获自动变量的值,所以当编译器在编译过程中检出给被截获自动变量赋值的操作时,便产生编译错误。
不过这样一来就无法在Block中保存值了,极为不便。解决这个问题有两种方法。第一种:C语言中有一个变量,允许Block改写值。具体如下:

  • 静态变量
  • 静态全局变量
  • 全局变量
    静态变量的这种方法似乎也适用于自动变量的访问。但是我们为什么没有这么做呢?
    实际上,在由Block语法生成的值Block上,可以存有超过其变量作用域的被截获对象的自动变量。变量作用域结束的同时,原来的自动变量被废弃,因此 Block 中超过变量作用域而存在的变量同静态变量一样,将不能通过指针访问原来的自动变量。这些在下节详细说明。
    解决Block中不能保存值这一问题的第二种方法是使用“_ block说明符”。更准确的表述方式为“ block存储域类说明符”( _block storage-class-specifier)。C语言中有以下存储域说明符:
  • typedef
  • extern
  • static
  • auto
  • register
    _block 说明符类似于 static、auto 和 register 说明符,它们用于指定将变量值设置到哪个存储域中。例如,auto 表示作为自动变量存储在栈中,static 表示作为静态变量存储在数据区中。
    下面我们来实际使用
    block说明符,用它来指定Block中想变更值的自动变量。我们在前面编译错误的源代码的自动变量声明上追加 _block 说明符。
__block int val = 10;
void (^blk)(void) = ^{val = 1;};

变换后:

struct __Block_byref_val_0 {
	void *__isa;
	__Block_byref_val_0 *__forwarding;
	int __flags;
	int __size;
	int val;
};
struct __main_block impl_0 {
	struct __block_impl impl;
	struct __main block desc 0* Desc;
	__Block_byref_val_0 *val;
	__main_block_impl_0(void *fp, struct __main_block_desc 0 *desc, __Block_byrefval_0 *_val, int flags=0) : val(_val->__forwarding) {
	impl.isa = &_NSConcreteStackBlock;
	impl.Flags = flags;
	impl.FuncPtr=fp;
	Desc = desc;
};
static void __main_block_func_0(struct__main_block_impl_0 *_cself) {
	__Block_byref_val_0 *val =__cself->val;
	
	(val->__forwarding->val) = 1;
}
static void_main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {
	_Block_object_assign(&dst->val, src->val, BLOCK_FIELD_IS_BYREF);
}

static void __main_block_dispose_0(struct __main_block_imp1_0*src) {
	_Block_object_dispose(src->val, BLOCK_FIELD_IS_BYREF);
}

static struct __main_block_desc_0 {
	unsigned long reserved;
	unsigned long Block_size;
	void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
	void (*dispose)(struct __main_block_impl_0*);
}__main_block_desc_0_DATA = {
	0,
	sizeof(structmain_block_impl_0),
	__main_block_copy_O,
	__main_block_dispose_0
};
int main() {
	__Block_byref_val_0 val = {
		0,
		&val,
		0,
		sizeof(__Block_byref_val_0),
		10
	};
	blk = &__mainblock_impl_0(
__main_block_func_0, &__main_block_desc_0_DATA, &val, 0x22000000);

	return 0;
}

这个__block变量val是怎样转换过来的呢?

__Block_byref_val_0 val = {
	0,
	&val,
	0,
	sizeof(_Block_byref_val_0),
	10
};

它竟然变为了结构体实例。__block变量也同 Block一样变成__Block_byref_val_0结构体类型的自动变量,即栈上生成的__Block_byref_val_0 结构体实例。该变量初始化为10,且这个值也出现在结构体实例的初始化中,这意味着该结构体持有相当于原自动变量的成员变量。


http://www.niftyadmin.cn/n/5434832.html

相关文章

Linux基础命令[15]-less

文章目录 1. less 命令说明2. less 命令语法3. less 命令示例3.1 不加参数3.2 -N(显示行号)3.3 打开多个文件3.4 标记导航3.5 搜索内容 4. 总结 1. less 命令说明 less:用来分页查看文件,与 more 相比更加的灵活,并且…

SAR ADC教程系列5——FFT频谱泄露以及相干采样

频谱泄露的出现以及如何规避? 为什么要相干采样? 1.分析ADC输出信号的频谱工具:DFT(Discrete Fourier Transform) 重点:DFT相邻频谱频率间隔为fs/N 如何规避频谱泄露? 对于DFT,它对于接收到的信…

力扣80删除有序数组的重复

本题用通解,k这里为2, 1.本题目是有序数组,允许有两个数字重复,就例如11223344,前k(即2个)个是肯定可以保存的,到第三个即以后的就要比较了。 用pos表示当前要放的数的位置下标&am…

Mybatis-xml映射文件与动态SQL

xml映射文件 动态SQL <where><if test"name!null">name like concat(%,#{name},%)</if><if test"username!null">and username#{username}</if></where> <!-- collection&#xff1a;遍历的集合--> <!-- …

git问题列表(一)(持续更新中~~~)

文章目录 问题1&#xff1a;如何在本地创建git仓库&#xff0c;并推送到远程仓库&#xff1f;问题2&#xff1a;如何创建本地分支&#xff0c;并基于其创建远程分支&#xff1f;问题3&#xff1a;报错“origin does not appear to be a git repository”是什么原因&#xff1f;…

AJAX概念和axios使用、URL、请求方法和数据提交、HTTP协议、接口、form-serialize插件

AJAX概念和axios使用 AJAX概念 AJAX就是使用XMLHttpRequest对象与服务器通信&#xff0c;它可以使用JSON、XML、HTML和text文本等格式发送和接收数据&#xff0c;AJAX最吸引人的就是它的异步特性&#xff0c;也就是说它可以在不重新刷新页面的情况下与服务器通信&#xff0c;…

开源免费CasaOS:轻松打造高效便捷的家庭云生活新体验

一、引言 随着科技的不断发展&#xff0c;家庭云系统逐渐成为现代家庭生活中的重要组成部分。CasaOS作为一款简单易用的开源家庭云系统&#xff0c;受到了广大用户的青睐。其简洁明了的界面设计&#xff0c;使得即使没有任何技术背景的用户也能轻松上手。本文将详细介绍CasaOS…

tcpudp面试题

什么是IP地址 ip地址是主机在网络中的唯一标识&#xff0c;当主机更换网络时ip号会改变。 ip网络号主机号&#xff08;A类网、B类网、C类网、D类网、E类网&#xff09;tcp和udp的区别 tcp&#xff1a; 1、提供面向链接的&#xff0c;可靠的数据传输服务&#xff0c; 2、稳定&am…