【iOS ARKit】3D 人体姿态估计

news/2024/7/20 21:10:40 标签: ios, 3d

       与基于屏幕空间的 2D人体姿态估计不同,3D人体姿态估计是尝试还原人体在三维世界中的形状与姿态,包括深度信息。绝大多数的现有3D人体姿态估计方法依赖2D人体姿态估计,通过获取 2D人体姿态后再构建神经网络算法,实现从 2D 到 3D人体姿态的映射。

      在 ARKit中,由于是采用计算机视觉的方式估计人体姿态,与2D人体姿态估计一样,3D人体姿态估计也受到遮挡、光照、姿态、视角的影响,并且相比于2D人体姿态估计,3D人体姿态估计计算量要大得多,也要复杂得多。但幸运的是,我们并不需要去关注底层的算法实现,ARKit会在检测到人体时直接提供一个ARBodyAnchor 类型对象,该对象包含一个 ARSkeleton3D类型的人体骨骼类型,通过这个类型可以获取所有检测到的人体骨骼关节点信息。ARBodyAnchor 描述了检测到的3D人形结构信息,其结构如下图所示。

     对比图2D结构,可以看到,在 ARKit 中,2D与3D人体关节结构层次基本一致,唯一不同的是,在3D 人体结构中,多了一个表示 3D 人体空间位置信息的 Transform(ARBodyAnchor 下的Transform)。在使用上,这两者使用方法完全一样,只是代表3D 人体骨骼的Skeleton 结构比2D更复杂。

      描述 3D人体骨骼结构的类为 ARSkeleton3D,也继承自 ARSkeleton 类,ARSkeleton3D 描述了3D空间中的人体骨骼节点结构。由于描述的人体结构是在三维空间中的层次结构,该类包含两个表示位置信息的数组 jointLocalTransforms 和 jointModelTransforms,其中jointLocalTransforms 描述的位置信息是某个节点相对其父节点的位置,而jointModelTransforms 描述的位置信息是相对检测到的ARBodyAnchor 位置。jointLocalTransforms 和 jointModelTransforms 包含的是3D空间中各关节点的位置信息矩阵。

     在使用中,可以通过 ARSkeleton3D 的 localTransform(for: ARSkeleton. JointName)方法得到某个关节点相对其父节点的位置,此方法需要传递关节点的原始名称(rawValue)而不是ARSkeleton 预定义的关节点名(预定义关节点名可以通过其.rawValue 获取原始名称)。同样,我们也可以通过 modelTransform(for: ARSkeleton. JointName)方法得到某个关节点相对 ARBodyAnchor 的位置。

       jointLocalTransforms 和 jointModelTransforms都是simd_float4x4 类型数组,因此我们也可以直接通过下标取到特定的关节点位置信息,下标方法取值比使用localTransform() 和 modelTransform()方法快得多,特别是对每次 ARAnchor update 都要执行的循环操作,可以节省很多时间。获取特定节点名称的索引值可以通过 definition.index (for:)方法实现。除此之外,还可以通过 ARSkeleton3D 的 isJointTracked(_:)方法查询每一个关节点在当前帧的检测跟踪情况,也可以获取每一个关节点的父节点。

    得到姿态信息是一个仿射变换矩阵 在仿射变换矩阵中,每一列都代表了不同的变换元素。具体到 simd_float4x4 中,这四列分别对应于平移(Translation)、缩放(Scale)、旋转(Rotation)和透视(Perspective)的变换。

  1. 第一列 (columns.0): X 轴方向的基向量,它包含了 X 轴上的缩放比例。
  2. 第二列 (columns.1): Y 轴方向的基向量,它包含了 Y 轴上的缩放比例。
  3. 第三列 (columns.2): Z 轴方向的基向量,它包含了 Z 轴上的缩放比例。
  4. 第四列 (columns.3): 位移(Translation)向量,它包含了平移信息。

    对于旋转矩阵来说,它是正交矩阵,因此其中的这三列(columns.0、columns.1、columns.2)是互相垂直的单位向量,表示了旋转的方向。而平移向量则描述了物体在空间中的位置。在 ARKit 中的 jointModelTransforms 中,这些矩阵描述了每个关节相对于整个人体坐标系的变换,因此你可以使用其中的这些信息来实现例如骨骼动画、渲染等效果。

3D人体姿态估计基础

     3D人体姿态估计在娱乐电玩、体育科学、人机交互、教育培训、工业制造等领域都有着广泛的应用。在ARKit 中,我们可以很简单方便地从底层 API 中获取检测到的3D人体姿态估计数据信息,但应用这些数据却需要详细了解3D人体姿态估计数据结构。本节先从原理技术上阐述应用数据的机制,然后学习 ARKit中对3D人体骨骼节点的结构描述。

     在2D人体姿态估计中,ARKit 使用了17个人体骨骼关节点对姿态信息进行描述,在3D人体姿态估计中,这个数量要大得多,共使用了91个人体骨骼关节点进行描述,并且这91个关节点并不在一个平面内,而是以三维的形式分布在3D空间中,与2D人体骨骼关节点一样,这些骨骼关节点对应真实人体骨骼位置,它们的分布与相互连接关系如图所示。

     在图中,我们也可以看到,定义人体根骨骼的Root 节点不在脚底位置,而是在尾椎骨位置,所有其他骨骼都以 Root 节点为根。详细的骨骼节点关联关系如下表所示。

肢体部位

骨骼关节点名称

索引

父节点名称

索引

尾椎骨

root

0

一1

臀部

hips_joint

1

root

0

左腿

left_upLeg_joint

2

hips_joint

1

left_leg joint

3

left_upLeg_joint

2

left_foot_joint

4

left_leg_joint

3

left_toes_joint

5

left_foot_joint

4

left_toesEnd_joint

6

left_toes_joint

5

右腿

right_upLeg_joint

7

hips_joint

7

right_leg_joint

8

right_upLeg_joint

7

right_foot_joint

9

right_leg joint

8

right_toes _joint

10

right_foot_joint

9

right_toesEnd_joint

11

right_toes _joint

10

脊柱

spine_1 _joint

12

hips_joint

1

spine_2_joint

13

spine_ 1 joint

12

spine_3_joint

14

spine_2_joint

13

spine_4_joint

15

spine_3 _joint

14

spine_5 _joint

16

spine_4_joint

15

spine_6 _joint

17

spine_5_joint

16

spine_7_joint

18

spine_6_joint

17

左臂

left_shoulder_1_joint

19

spine_? joint

18

left_arm_joint

20

left_ shoulder_1_joint

19

left_forearm_ joint

21

left_arm_joint

20

左手

left_hand_joint

22

left_forearm_joint

21

左手食指

left_handIndexStart_joint

23

left_hand_joint

22

left_handIndex_ 1_joint

24

left_handIndexStart_joint

23

left_handIndex_2 _joint

25

left_handIndex_1 joint

24

left_handIndex_3_joint

26

left_handIndex_2_joint

25

left_handIndexEnd joint

27

left_handIndex_3 joint

26

左手中指

left_handMidStart_joint

28

left_hand_joint

22

left_handMid_1_ joint

29

left_handMidStart_joint

28

left_handMid_ 2_joint

30

left_handMid_1 _joint

29

left _handMid_3_joint

31

left_handMid_2 _joint

30

left_handMidEnd joint

32

left_handMid_3_joint

31

左手无名指

left_handPinkyStart_joint

33

left_hand_joint

22

left_handPinky_1_ joint

34

left_handPinkyStart_joint

33

left_handPinky_2 joint

35

left_handPinky_1 joint

34

left_handPinky_3 _joint

36

left_handPinky_ 2 joint

35

left_handPinkyEnd_joint

37

left_handPinky_3_joint

36

肢体部位

骨骼关节点名称

索引

父节点名称

索引

左手小指

left_handRingStart_joint

38

left_hand_joint

22

left_handRing_1_joint

39

left_ handRingStart_joint

38

left_handRing_2 joint

40

left_handRing_ 1_joint

39

left handRing_3_joint

41

left_handRing_2_ joint

40

left_handRingEnd_joint

42

left_ handRing_3_joint

41

左手母指

left_handThumbStart_ joint

43

lleft_hand_joint

22

left handThumb_1_joint

44

left_handThumbStart_ joint

43

left_handThumb_2 _joint

45

 left_handThumb_1_joint

44

left handThumbEnd_joint

46

left_handThumb_2_joint

45

颈椎

neck_1 _joint

47

spine_7_ joint

18

neck 2 joint

48

neck_1 _joint

47

neck_3_joint

49

neck_2 joint

48

neck_4 joint

50

neck_3 _joint

49

头部

head_joint

51

neck_4 _joint

50

下巴

jaw_joint

52

head_ joint

51

chin_ joint

53

jaw_ joint

52

左眼

left_eye _joint

54

head_joint

51

left_eyeLowerLid_joint

55

left_eye_joint

54

left_eyeUpperLid_joint

56

left_eye_joint

54

left_ eyeball_joint

57

left_eye_joint

54

鼻子

nose_joint

58

head joint

51

右眼

right_eye joint

59

head_joint

51

right_ eyeLowerLid_joint

60

right_eye_joint

59

right_eyeUpperLid joint

61

right_eye_joint

59

right_eyeball_joint

62

right_eye_ joint

59

右臂

right_shoulder_1 _joint

63

spine_7_joint

18

right_arm_joint

64

right_shoulder_1_joint

63

right_forearm_joint

65

right_arm_ joint

64

右手

right_hand_joint

66

right_forearm_joint

65

右手食指

right_handIndexStart_ joint

67

right_hand_joint

66

right_handindex_ 1_joint

68

right_handIndexStart_joint

67

right_ handIndex_2 joint

69

right_handIndex_ 1_joint

68

right_handIndex_3_joint

70

right_handIndex_2_ joint

69

right_handIndexEnd_joint

71

right_handIndex_3_joint

70

右手中指

right_ handMidStart_joint

72

right_hand_joint

66

right_handMid_1_ joint

73

right_handMidStart_joint

72

right_handMid_2_joint

74

right_handMid_1_joint

73

right_handMid_3 _joint

75

right_ handMid_ 2 joint

74

right_ handMidEnd_joint

76

right_handMid_3 _joint

75

肢体部位

骨骼关节点名称

索引

父节点名称

索引

右手无名指

right_handPinkyStart_ joint

77

right_hand_joint

66

right_ handPinky_1_joint

78

right_handPinkyStart _joint

77

right_handPinky_2_ joint

79

right_handPinky_1_joint

78

right_handPinky_3_ joint

80

right_handPinky_2 _joint

79

right_ handPinkyEnd_joint

81

right_handPinky_3_joint

80

右手小指

right_handRingStart_joint

82

right_hand_joint

66

right_handRing_ 1_joint

83

right_handRingStart_joint

82

right_ handRing_2_joint

84

right_handRing_ 1_joint

83

right_handRing_3 joint

85

right_handRing_2 joint

84

right_handRingEnd _joint

86

right_handRing_3_joint

85

右手母指

right_handThumbStart_ joint

87

right_hand_joint

66

right_handThumb_1_joint

88

right_handThumbStart_joint

87

right_handThumb_2_joint

89

right_handThumb_1_joint

88

right_handThumbEnd_joint

90

right_handThumb_2 _joint

89

     人体骨骼关节点名称开发者可以自行定义,但关节点数量、序号、关联关系必须与表中一致。如果用于驱动三维模型,人体骨骼关节点命名建议应与模型骨骼命名完全一致以减少错误和降低程序绑定压力。


http://www.niftyadmin.cn/n/5364148.html

相关文章

WPF布局面板

StackPanel StackPanel 是一种常用的布局控件,可以支持水平或垂直排列,但不会换行。当子元素添加到 StackPanel 中时,它们将按照添加的顺序依次排列。默认情况下,StackPanel 的排列方向是垂直的,即子元素将从上到下依次排列。可以使用 Orientation 属性更改排列方向。可以…

服务器和云计算之间有什么关系?

云计算与服务器之间的关系是密切而复杂的。首先,我们需要明确一点,云计算并不是一种全新的技术,而是对现有技术的一种整合和改进。在这个基础上,我们可以更好地理解云计算与服务器之间的关系。 服务器是云计算的重要组成部分之一…

Flutter开发iOS问题记录

一、版本适配问题 warning: The iOS deployment target ‘IPHONEOS_DEPLOYMENT_TARGET’ is set to 10.0, but the range of supported deployment target versions is 12.0 to 17.2.99. (in target ‘Protobuf’ from project ‘Pods’) 可以通过在podfile中配置解决。 pos…

iOS图像处理----OpenGL ES之灰色滤镜

目录 1、设置图层 2、设置图形上下文 3、设置渲染缓冲区(renderBuffer) 4、设置帧缓冲区(frameBuffer) 5、编译、链接着色器(shader) 6、设置VBO (Vertex Buffer Objects) 7、设置纹理 8、渲染 不采…

python实现音频转文本

网上下载了一堆视频,但是没时间看,想着把视频声音转换成文字,读文字来学习就快多了, 找了一圈没有免费的,还是自己鼓捣一个吧 工具 faster-whisper 音频转文本ffmpeg 将视频提取音频保存为wav格式 实现 from faster…

初始Ansible自动化运维工具之playbook剧本编写

一、playbook的相关知识 1.1 playbook 的简介 playbook是 一个不同于使用Ansible命令行执行方式的模式,其功能更强大灵活。简单来说,playbook是一个非常简单的配置管理和多主机部署系统,不同于任何已经存在的模式,可作为一个适…

Mocaverse NFT 概览与数据分析

作者:stellafootprint.network 编译:mingfootprint.network 数据源:Mocaverse NFT Collection Dashboard Mocaverse 是 Animoca Brands 推出的专属 NFT(非同质化代币)系列,包含 8,888 个独特的 "M…

深度学习在智能交互中的应用:人与机器的和谐共生

深度学习与人类的智能交互是当前人工智能领域研究的热点之一。深度学习作为机器学习的一个重要分支,具有强大的特征学习和模式识别能力,可以模拟人脑的神经网络进行数据分析和预测。而人类的智能交互则是指人类与机器之间的信息交流和操作互动&#xff0…